Application of Neural Networks for the Classi
نویسنده
چکیده
Three dierent methods were investigated to determine their ability to detect and classify various categories of diuse liver disease. A statistical method, i.e., discriminant analysis, a supervised neural network called backpropagation and a nonsupervised, self-organizing feature map were examined. The investigation was performed on the basis of a previously selected set of acoustic and image texture parameters. The limited number of patients was successfully extended by generating additional but independent data with identical statistical properties. The generated data were used for training and test sets. The nal test was made with the original patient data as a validation set. It is concluded that neural networks are an attractive alternative to traditional statistical techniques when dealing with medical detection and classication tasks. Moreover, the use of generated data for training the networks and the discriminant classier has been shown to be justiied and prootable.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملApplication of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملThe Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit
Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, a...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کامل